Technical data sheets

Digital Energy™ Uninterruptible Power Supply

LP 11 Series / 3 - 5 - 6 - 8 - 10 kVA

A product by:

GE Digital Energy General Electric Company CH – 6595 Riazzino (Locarno) Switzerland T +41 (0)91 / 850 51 51 F +41 (0)91 / 850 51 44

www.gedigitalenergy.com

General data						
Topology	VFI, doub	le conversio	n			
Nominal output rating	kVA/kW	3/2.4	5/4	6/4.8	8/6.4	10/8
Overall efficiency at nominal load	%	86	88	88	88	89
Heat dissipation at inverter nominal load,	147	7.77	545	CEE	072	000
PF=0.8. and charged battery	W	327	545	655	872	988
Cooling air (25°C - 30°C)	m³/h			330 max.		
Audible noise level	dB(A) 40-50 (EN 27779)					
Operating temperature range	-10°C - 40	°C (15°C - 25	5°C recomm	ended for bat	tery)	
Storage temperature range	-20°C - +4	¥5°C				
Relative humidity	Max. 95%	(non-conde	ensing)			
Protection degree	IP 20 (IEC	60529 and E	OIN 40050)			
Safety	EN 50091	-1-1, IEC/EN	60950, IEC/	EN 62040-1		
EMC	EN 50091	-2, IEC/EN 6	2040-2 Class	5 A		
Surge capacity	IEC 61000)-4-5 (6kV 1.2	2/50 µsec -3	kA 8/20µsec)		
Electrostatic discharge immunity	4kV conto	act / 8kV air	discharge			
Transport	On pallet / rollers for installation					
Colour	Cubicle: RAL 9010 (white) Front panel: RAL 9006 (aluminum)					
Cable connections	On terminals, bottom-rear					
Cooling	Forced by regulated internal fans					
Nominal AC input voltage Input frequency range	220 - 240 ¹ 40 - 70Hz					
Input frequency range	40 - 70Hz					
Power factor	>0.99					
THDi	<10%		T	T		
Nominal input current (no charging, U _{in} = nominal)	Α	12.1	19.8	23.7	31.6	39
Inrush current	None					
DC output voltage	380 V					
Battery charger						
Battery charging characteristic	IU (DIN 41773) constant current charging until floating voltage, the constant voltage charging + boost charge					
DC input voltage range	350 - 450 V					
DC output voltage	162.5/177V (3kVA), 271/295.5V (5/6/8/10kVA)					
Output current limitation	Adc	2.0	2.0	2.0	3.0	3.0
Recharge time	1.5 - 3 hours for 80% capacity					
Battery data						
Battery type	Sealed an	nd maintena	nce free IVP	A-Valve Rea	julated Lead /	Acid)
Float voltage at 25°C	162.5 / 27		ince in ee (VIV)	Lin-valve neg	jaiateu Leuu /	iciuj
Number of 12V batteries (in standard version)			h (5/6L)(A)	20x12Ah (8/1	0k\/\^\	
Standard backup time at nominal load PF=0.8	min	10	10	8 8	11	8

See table on page 4

Standard backup extensions

270 - 400) V				
kVA	3	5	6	8	10
kW	2.4	4	4.8	6.4	8
220 / 230) / 240V	•			-
Sine wav	'e				
+/- 1%					
+/- 2%					
+/- 2%					
10ms					
110%: 20	min., 130%	5: 3.5 min., 15	50%: 2 min.		
Α	32	45	50	67	100
50/60Hz	(selectable)				
+/- 0.1%, unless synchronised with the utility					
+/- 2, 4 0	r 6% of nom	inal, selectab	ole		
7°					
1% max					
10% max	x. with meas	ured crest fa	ctor 2.5:1		
		ng power fac	ctor is permi	tted within	the specifie
5:1					
Up to 1000m no derating Above 1000m 12.5% per 1000m, max. 4000m					
Automatic shut down (or transfer to bypass if available) in case of: - low/high DC voltage - overtemperature - overload / short circuit					
				iins	
20% In w	vithin 10 ms	with MCB cla	ss B		
	kVA kW 220 / 230 Sine wav +/- 1% +/- 2% 10ms 110%: 20 A 50/60Hz +/- 0.1% +/- 2, 4 o 7° 1% max 10% max Any laggrating to 5:1 Up to 100 Above 10 Automat - low/hig - overter - overloo Output p	kW 2.4 220 / 230 / 240V Sine wave +/- 1% +/- 2% 10ms 110%: 20 min., 130% A 32 50/60Hz (selectable) +/- 0.1%, unless sync +/- 2, 4 or 6% of nom 7° 1% max 10% max. with meas Any lagging or leadirating to PF=0.5 5:1 Up to 1000m no dera Above 1000m 12.5% Automatic shut dowr - low/high DC voltage - overtemperature - overload / short circ Output protected ago	kVA 3 5 kW 2.4 4 220 / 230 / 240V Sine wave +/- 1% +/- 2% 10ms 110%: 20 min., 130%: 3.5 min., 15 A 32 45 50/60Hz (selectable) +/- 0.1%, unless synchronised wit +/- 2, 4 or 6% of nominal, selectable) 10% max 10% max 10% max. with measured crest factoring to PF=0.5 5:1 Up to 1000m no derating Above 1000m 12.5% per 1000m, m Automatic shut down (or transfer low/high DC voltage overtemperature overload / short circuit Output protected against connect	kVA 3 5 6 kW 2.4 4 4.8 220 / 230 / 240V Sine wave +/- 1% +/- 2% 10ms 110%: 20 min., 130%: 3.5 min., 150%: 2 min. A 32 45 50 50/60Hz (selectable) +/- 0.1%, unless synchronised with the utility +/- 2, 4 or 6% of nominal, selectable 7° 1% max 10% max. with measured crest factor 2.5:1 Any lagging or leading power factor is permirating to PF=0.5 5:1 Up to 1000m no derating Above 1000m 12.5% per 1000m, max. 4000m Automatic shut down (or transfer to bypass if a low/high DC voltage - overtemperature - overload / short circuit	kVA 3 5 6 8 kW 2.4 4 4.8 6.4 220 / 230 / 240V Sine wave +/- 1% +/- 2% 10ms 110%: 20 min., 130%: 3.5 min., 150%: 2 min. A 32 45 50 67 50/60Hz (selectable) +/- 0.1%, unless synchronised with the utility +/- 2, 4 or 6% of nominal, selectable 7° 1% max 10% max. with measured crest factor 2.5:1 Any lagging or leading power factor is permitted within rating to PF=0.5 5:1 Up to 1000m no derating Above 1000m 12.5% per 1000m, max. 4000m Automatic shut down (or transfer to bypass if available) in - low/high DC voltage - overtemperature - overload / short circuit Output protected against connection to the mains

Bypass								
Drimary components		- Thyristor switch						
Primary components	- Sync	hronisation cir	cuit inverter	/bypass maiı	าร			
Bypass voltage limits	+/- 10% of nominal							
Frequency tracking range	+/- 2, 4 or 6% of nominal, selectable							
Slew rate	1Hz/s or 5Hz/s, selectable							
Overload capability on bypass, 1 minute/10 minutes	Α	27/18	45/30	65/45	73/60	90/75		

Interfacing	
Potential free contacts	Four open-collector contacts signalling following alarms: - bypass active - mains failure - battery low - general alarm
ComConnect port (on Delta 9 pin connector)	For serial communication
Input terminals for	- Emergency shutdown - Battery extension MCB alarm wiring

Note: all indicated values are typical. Variations may be found from one unit to another.

Controls, signals and alarms

Front

Operation/Alarm green/red LED LCD screen 2 x 16 characters

Push-buttons

Buzzer (resettable)

Rear

RS232 interface card (std installed) 3 option slots for

Potentialfree contacts*

SNMP*

: RPA* redundant parallel architecture

On/off switch

Manual bypass switch Input/Output terminals

DC connector for external batteries (not for LP 3-11)

Line circuit breaker Bypass circuit breaker

The LCD screen shows UPS system data, status messages, alarm messages, settings.

Front panel

* = option

Optional features

SNMP interface card

An SNMP interface card can be placed in the rear panel of the UPS, and allows the data interface to be connected directly to an Ethernet network.

When this option is installed the ComProt communication link (serial communication) is no longer available to the user.

Relay card

The relay plug-in card can be installed in the rear panel of the UPS. The card is provided with four potential free contacts representing: battery low, bypass active, utility failure and general alarm.

Alarm boxes

An interface box linked to the ComConnect port, the VIC/RELAYBOX/01 translates the ComConnect signals to five independent changeover contacts, with a maximum switching capacity of 230V/5A each.

Wall mounted plastic alarm boxes are available for remote audible and visual alarm indication.

Connectivity products

A splitter box translates information from the ComConnect to several computers.

Interface kits (cables and/or software) are available for operating systems supporting JAVA and most commonly used network operating systems, including Novell, UNIX, VMS, Windows platforms, IBM AS/400, IBM OS/2, LINUX. Please contact your dealer for specific information.

Battery extension packs

Except for the 3-11 model, the LP 11 UPS can be equipped with additional batteries to increase the runtime of the unit. These additional batteries are housed in a separate battery pack. Additional batteries will increase the recharging time for the unit. All other operational information is the same.

Battery packs can be connected in parallel to increase the runtime. DC connectors make installation of battery packs easy and simple.

Dimensions and battery

UPS	Backup	Total	Nr. of extra	Battery cabinet	UPS cabinet				
Model	time (min.)	capacity (Ah)	battery cabinets	"VSDA 1"	Dimensions	UPS weight (*)	Shipping weight (*)		
LP3-11	10	7	n.a.	n.a.		85kg	100kg		
	10 *	7 *	-						
	25	14	1		Cabinet: "VSD1"				
LP5-11	45	21	1		Dimensions (hxwxd):	110kg	125kg		
	60	28	2		537x313x590mm				
	80	35	2	Dimensions (hxwxd):	(height with wheels)				
	8 *	7 *	-	537x313x590mm	Chinning dimensions:				
	21	14 *	1	Shipping dimensions (hxwxd):	Shipping dimensions: 800x460x750mm				
LP6-11	35	21	1	800×460×750mm		115kg	130kg		
	50	28	2	2.00					
	65	35	2	Battery: 240Vdc 7Ah or 14Ahr					
	11 *	12 *	-	TAITOI 14AIII	Cabinet: "VSD2"				
	22	19	1	Weight with battery:	Dimensions (hxwxd):				
LP8-11	33	26	12	70kg or 120kg	680x313x720mm	165kg	185kg		
	44	33	2	Shipping weight:	(height with wheels)				
	55	40	2	85kg or 135kg	Chinaina dinanaina				
	8 *	12 *	-		Shipping dimensions: 915x460x810mm				
	16	19	1		313A400A010HIIII				
LP10-11	25	26	1			170kg	190kg		
	34	33	2						
	43	40	2						

^{(*):} Standard backup time and capacity

UPS block diagram, protections and cable sections

Re	ecommended external fusing of input wiring	Cable sections input and output recommended by European standards / in()SEV Alternatively, local standards to be respected		
UPS	Fuses gL/gG or Automatic Breakers	CABLE SECTIONS		
Model	Mains / Bypass input	mm²	AWG	
LP3-11	16A	4	12	
LP5-11	25A	6	10	
LP 6-11	25A	6	10	
LP 8-11	50A	10	8	
LP 10-11 50A		10	8	